Calculation of λ_{max} of Organic Compounds Using Woodward Fieser Rules

In 1945 Robert Burns Woodward gave certain rules for correlating λ_{max} with molecular structure. In 1959 Louis Frederick Fieser modified these rules with more experimental data, and the modified rule is known as Woodward-Fieser Rules. It is used to calculate the position and λ_{max} for a given structure by relating the position and degree of substitution of chromophore.

WOODWARD- FIESER RULES:

Each type of diene or triene system is having a certain fixed value at which absorption takes place; this constitutes the *Base value or Parent value*. The contribution made by various alkyl substituents or ring residue, double bond extending conjugation and polar groups such as -Cl, -Br etc are added to the basic value to obtain λ_{max} for a particular compound.

I) CONJUGATED DIENE CORRELATIONS:

Homoannular Diene:- Cyclic diene having conjugated double bonds in same ring.

Heteroannular Diene:- Cyclic diene having conjugated double bonds in different rings.

Endocyclic double bond:- Double bond present in a ring.

Exocyclic double bond: - Double bond in which one of the doubly bonded atoms is a part of a ring

Here Ring A has one exocyclic and endocyclic double bond. Ring B has only one endocyclic double bond.

В

A

PARENT VALUES AND INCREMENTS FOR DIFFERENT SUBSTITUENTS/GROUPS:

I) CONJUGATED DIENE CORRELATIONS:

i) Base value for an unsubstituted, conjugated, homoannular die	ne = 253 nm
ii) Base value for an unsubstituted, conjugated, acyclic or hetero	oannular diene = 214 nm

Increments for:

Each extra double bonds in conjugation + 30 nm

Exocyclic double bond (effect is twofold if the bond is exocyclic to two rings) + 5 nm

Substituent effect:

A. -OCOR or -OCOAr + 0 nm

B. Simple alkyl substituents or ring residue + 5 nm

- C. Halogen (-Cl, -Br) + 5 nm
- D. OR (R=Alkyl) + 6 nm
- E. SR (R=Alkyl) + 30 nm
- F. NR₂ (R=Alkyl) + 60 nm

Eg:

Base value = 214 nmRing residue = $3 \times 5 = 15 \text{ nm}$

Exocyclic double bond $= 1 \times 5 = 5 \text{ nm}$

 $\lambda_{max} = 214 + 15 + 5 = 234 \ nm$

base value	: 214 nm
3 ring residues	: +15
l exocyclic C=C	: + 5 .
Fotal λ_{max} : 234	nm
Observed : 235 1	ım

3.

base value	:214 nm
3 ring residues	: +15
1 exocyclic C=C	: + 5
-OR	:+6.
Total λ_{max}	: 240 nm
Observe	d : 241 nm

4.

5.

base value (Homoannular) : 253 nm 3 ring residues : +15 1 exocyclic C=C : + 5 Total λ_{max} : 273 nm (Observed : 235 nm)

base Value: 253 nm 3 Ring residues: +15 1 Exocyclic C=C: + 5 Double-bond Extending Conjugation: +30. Total λ_{max} : 303 nm Observed: 304 nm

7.

6.

Base value: 214 nm

2 Ring residue +10 Exocyclic C=C: + 5 Total λ_{max} : 229 nm

Observed: 230 nm

8.

Base value: 214 nm 2 Ring residue: +10 Exocyclic C=C: + 5 . Total λ_{max} 229 nm Observed: 236 nm

Transoid (base): 214 nm 5 ring residues: +25 1 DEC: +30 3 exocyclic C=C +15 . Total λ_{max} : 284 nm Observed: 283 nm

Cisoid (base): 253 nm 3 ring residues: +15 1 Alkyl subs: +5 1 exocyclic C=C +5. Total λ_{max} : 278 nm Observed: 275 nm

11.

Cisoid (base): 253 nm 5 ring residues: +25 2 DEC: +60 3 exocyclic C=C +15 . Total λ_{max} : 353 nm Observed: 355 nm

II) ENONE:

Rules of Enon & Dienone Absorption Base values:

- i. Acyclic α , β -unsaturated ketones 215 nm
- ii. 6-membered cyclic α , β -unsaturated ketones 215 nm
- iii. 5-membered cyclic α , β -unsaturated ketones 202 nm
- iv. α,β -unsaturated aldehydes 210 nm
- v. α,β -unsaturated carboxylic acid & esters 195 nm

Increments for:

Double bond extending conjugation (DEC): +30

Exocyclic double bond: + 5

Homodiene component: +39

Increments for:

Alkyl group/ring residue: α position +10, β position +12, γ & higher position +18

Polar groups:

-OH: a position +35, β position +30, δ position +50

- -OAc: α , β , γ + 6
- -OMe: $\alpha + 35$, $\beta + 30 \gamma + 17 \delta + 31$
- -SAlk: $\beta + 85$
- -Cl: α +15 β +12
- -Br: α +25 β +30

-NR₂: β +95

Base value:	215 nm
a substituent:	+10
β substituent:	+12
Total:	237 nm
Observed:	232 nm

Base value:	202 nm
β substituent:	+12
α-OH:	+35
Total:	249 nm
Observed:	247 nm

$\Delta^{4,5}$ system (base):	215 nm
2 β substituents:	+24
1 exocyclic C=C:	+ 5
Total:	244 nm
Observed:	245 nm

Base value:	215 nm
2 β substituents:	+24
α-OH:	+35
Total:	274 nm
Observed:	270 nm

Base value:	215 nm
1 DEC:	+30
Homocyclic diene:	+39
δ ring residue:	+18
Total:	302 nm
Observed:	300 nm

Base value:	202 nm
1 α-Br:	+25
2 β-ring residue:	+24
Exocyclic C=C:	+ 5
Total:	256 nm
Observed:	251 nm

280 nm 280 nm Observed:

Total:

Base value:	215 nm
a alkyl substituent:	+10
β alkyl substituent:	+12
Total:	237 nm

~	<u> </u>
1	<u>ا</u>
Base value:	215 nm
a alkyl:	+10
β alkyl:	+12
Total:	237 nm

Base value:	215 nm
1 DEC:	+30
Exocyclic C=C:	+ 5
β-alkyl substituent:	+12
y-alkyl substituent:	+18
δ-alkyl substituent:	+18
Total	298 nm

Base value:	215 nm
1 a-alkyl:	+10
2 β-alkyl:	+24
2 Exocyclic C=C:	+10
Total:	259 nm